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Abstract

Determinantal Point Processes (DPPs) have attracted significant interest from the
machine-learning community due to their ability to elegantly and tractably model
the delicate balance between quality and diversity of sets. We consider learning
DPPs from data, a key task for DPPs; for this task, we introduce a novel optimization
problem, Contrastive Estimation (CE), which encodes information about “negative”
samples into the basic learning model. CE is grounded in the successful use of
negative information in machine-vision and language modeling. Depending on the
chosen negative distribution (which may be static or evolve during optimization),
CE assumes two different forms, which we analyze theoretically and experimentally.
We evaluate our new model on real-world datasets; on a challenging dataset, CE
learning delivers a considerable improvement in predictive performance over a
DPP learned without using contrastive information.

1 Introduction

Careful selection of items from a large collection underlies many machine learning applications.
Notable examples include recommender systems, information retrieval and automatic summarization
methods, among others. Typically, the selected set of items must fulfill a variety of application
specific requirements—e.g., when recommending items to a user, the quality of each selected item is
important. This quality must be, however, balanced by the diversity of the selected items to avoid
redundancy within recommendations.

But balancing quality with diversity is challenging: as the collection size grows, the number of its
subsets grows exponentially. A model that offers an elegant, tractable way to achieve this balance is a
Determinantal Point Process (DPP). Concretely, a DPP models a distribution over subsets of a ground
set Y that is parametrized by a semi-definite matrix L ∈ R|Y|×|Y|, such that for any subset A ⊆ Y ,

Pr(A) ∝ det(LA), (1)

where LA = [Lij ]i,j∈A is the submatrix of L indexed by A. Informally, det(LA) represents the
volume associated with subset A, the diagonal entry Lii represents the importance of item i, while
entry Lij = Lji encodes similarity between items i and j. Since the normalization constant of (1)
is simply

∑
A⊆Y det(LA) = det(L + I), we have Pr(A) = det(LA)/det(L + I), which suggests

why DPPs may be tractable despite their exponentially large sample space.

The key object defining a DPP is its kernel matrix L. This matrix may be fixed a priori using domain
knowledge [7], or as is more common in machine learning applications, learned from observations
using maximum likelihood estimation (MLE) [20, 32]. However, while fitting observed subsets
well, MLE for DPPs may also assign high likelihoods to unobserved subsets far from the underlying
generative distribution [12]. MLE-based DPP models may thus have modes corresponding to subsets
that are close in likelihood, yet differ in how close they are to the true data distribution. Such
confusable modes reduce the quality of the learned model, hurting predictions.

Such concerns when learning generative models over huge sample spaces are not limited to the
area of subset-selection: applications in image and text generation have been the driving force in
developing techniques for generating high-quality samples. Among their innovations, a particularly
successful technique uses generated samples as “negative samples” to train a discriminator, which
in turn encourages generation of more realistic samples; this is the key idea behind the Generative
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Adversarial Nets (GANs) introduced in [21]. These observations motivate us to investigate the use
of DPP-generated samples as negatives, which we then incorporate into the DPP learning task to
improve the modeling power of DPPs. Intuitively, negative samples are those subsets that are far from
the true data distribution, but to which the DPP erroneously assigns high probability. As there is no
closed form way to generate such idealized negatives, we approximate them via an external “negative
distribution”. More precisely, we introduce a novel DPP learning problem that incorporates samples
from a negative distribution into traditional MLE. While the focus of our work is on generating
the negative distribution jointly with L, we also investigate outside sources of negative information.
Ultimately, our formulation leads to an optimization problem harder than the original DPP learning
problem; we show that even approximate solutions greatly improve the performance of the DPP
model when evaluated on concrete tasks, such as identifying the best item to add to a subset of chosen
objects (basket-completion).

Contributions. To our knowledge, this work is the first theoretical or empirical investigation of
augmenting the DPP learning problem with negative information.

– Our first main contribution is the Contrastive Estimation (CE) model, which incorporates negative
information through inferred negatives into the learning task.

– Next we introduce static and dynamic models for CE and discuss the theoretical and practical
trade-offs of such choices. Static models leverage information that does not evolve over time,
whereas dynamic models draw samples from a negative distribution that depends on the current
model’s parameters; dynamic CE posits an optimization problem worthy of independent study.

– Finally, we show how to learn CE models efficiently; furthermore, we show that the complexity of
conditioning a DPP on a chosen sample can be brought down from O(|Y|2) to essentially O(|Y|).
This speedup helps dynamic CE while removing a major bottleneck in computing next-item
predictions for a set.

Using findings obtained from extensive experiments conducted on small datasets, we show on a large
dataset that CE learning significantly improves the modeling power of DPPs, as measured by metrics
that evaluate a subset-selection model’s performance on basket completion tasks.

2 Background and related work

First introduced to model fermion behavior by Macchi [31], DPPs have gained popularity due to
their elegant balancing of quality and subset diversity. DPPs are studied both for their theoretical
properties [27, 7, 1, 26, 19, 14, 28] and their machine learning applications: object retrieval [1],
summarization [30, 12], sensor placement [25], recommender systems [17], neural network compres-
sion [33], and minibatch selection [45].

Gillenwater et al. [20] study DPP kernel learning via EM, while Mariet & Sra [32] present a fixed-
point method. DPP kernel learning has leveraged Kronecker [34] and low-rank [16, 18] structures.
Learning guarantees using DPP graph properties are studied in [44].

Aside from Tschiatschek et al. [43], Djolonga et al. [15], who learn a Facility LocatIon Diversity
(FLID) distribution (as well as more complex FLIC and FLDC models) by contrasting it with a
“negative” product distribution, little attention has been given to using negative samples to learn richer
subset-selection models.

Nonetheless, leveraging negative information is a widely used in other applications. In object
detection, negative mining corrects for the skewed simple-to-difficult negative distribution by training
the model on its false positives [42, 11, 39]. In language modeling, Noise Contrastive Estimation
(NCE) [23], which tasks the model with distinguishing positive samples from generated negatives,
was first applied in [36] and has been instrumental in Word2Vec [35]. Since then, variants using
adaptive noise [13] have been introduced. NCE is also the method used by Tschiatschek et al. [43]
for subset-selection.

An alternate approach to negative samples within submodular language models was introduced as
Contrastive Estimation in Smith & Eisner [40, 41]. Negative sampling is also used in Generative
Adversarial Networks [21], where a generator network is trained by competing with an adversarial
discriminative network which distinguishes between positives and generated negatives.
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3 Learning DPPs with negative samples

Motivated by the similarities between DPP learning and crucial problems of structured prediction
in other machine-learning fields, we introduce an optimization problem that leverages negative
information. We refer to this problem as Contrastive Estimation (CE), due to its ties to a notion of the
same name discussed by Smith & Eisner [40].

3.1 Contrastive Estimation

In conventional DPP learning, we seek to maximize determinantal volumes of sets drawn from the
true distribution µ (that we wish to model), by solving the following MLE problem, where samples
in the training set A+ are assumed to be drawn i.i.d.:

Find L ∈ argmax
L�0

φMLE(L) (2)

φMLE(L) ,
1

|A+|
∑
A∈A+

log det(LA)− log det(L + I).

We augment problem (2) to incorporate additional information from a negative distribution ν, which
we wish to have the DPP distribution move away from. The ensuing optimization problem is the main
focus of our paper.

Definition 1 (Contrastive Estimation). Given a training set of positive samples A+ on which φMLE
is defined and a negative distribution ν over 2Y (the power set of Y), we call Contrastive Estimation
the optimization problem

Find L ∈ argmax
L�0

φCE(L) (3)

φCE(L) , φMLE(L)− EA∼ν [logPL(A)],

where we write PL(A) ≡ det(LA)/det(L + I).

The expectation can be approximated by drawing a set of samples A− from ν, in which case φCE
becomes1

(4)φCE(L)= 1
|A+|

∑
A∈A+

logPL(A)− 1
|A−|

∑
A∈A−

logPL(A)

If |A−|= 0, the CE objective (3) reduces to φMLE.

Conversely, the basic objective function φMLE can be viewed as a sample-based approximation of the
value EA∼µ[logPL(A)], where µ is the true distribution generating the samples in A+.

Interestingly, another reformulation of (3) suggests an even broader class of DPP kernel learning:
indeed, let yA be 1

|A+| (resp. − 1
|A−| ) for A ∈ A+ (resp. A−), and define

A = {(yA, A) : A ∈ A+} ∪ {(yA, A) : A ∈ A−},

where the yA should be viewed as belonging in {−1, 1} with an additional normalization coefficient.
Then, we can rewrite equation (4) in the following form

φCE(L) =
∑

(yA,A)∈A

yA

[
log detLA − det(L + I)

]
. (5)

Formulation (5) suggests the use of a broader scope of continuous labels yA; we do not cover this
variation in the present work, but note that (5) permits the use of weighted samples in the learning
process.

Remark 1. Compared to the traditional Noise Contrastive Estimation (NCE) approach, which
requires full knowledge of the negative distribution, CE does not suffer any such limitation: we only
require an estimate of Eν [logPL(A)].

1With a slight abuse of notation, we continue writing φCE despite the sample based approximation to EA∼ν [·].
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Remark 2. Eq. (3) can be made to go to +∞ with pathological negative samples (i.e. PL(A−) = 0);
hence, choosing the negative distribution is a crucial concern for CE.

Indeed, to fully specify the CE problem one must first choose the negative distribution ν, or equiva-
lently, choose a procedure to generate negative samples to obtain (4). We consider below two classes
of distributions ν with considerably different ramifications: dynamic negatives and static negatives;
their analysis is the focus of the next two sections.

3.2 Dynamic negatives

In most applications leveraging negative information (e.g., negative mining, GANs), negative samples
evolve over time based on the state of the learned model. We call any ν that depends on the state
of the model a dynamic negative distribution: at iteration k of the learning procedure with kernel
estimate Lk, we use a ν parametrized by Lk.

More specifically, we focus on the setting where negative samples themselves are generated by the
current DPP, with the goal of reducing overfitting. Given a positive sample A+, we generate a
negative A− by replacing i ∈ A+ with j that yields a high probability PLk

(A+\{i} ∪ {j}) (Alg. 1).
We generate the samples probabilistically rather than via mode maximization so that a sample A+

can lead to different A− negatives when we generate more negatives than positives.

Algorithm 1 Generate dynamic negative

Input: Positive sample A+, current kernel Lk
Sample i ∈ A+ prop. to its empirical probability in A+

A− := A+\{i}
Sample j w.p. proportional to PLk

(A− ∪ {j})
A− ← A− ∪ {j}
return A−

As ν evolves along with the kernel estimate Lk, the second term of the objective function φCE acts as
a moving target that must be continuously estimated during the learning procedure. For this reason,
we choose to optimize φCE by a two-step procedure described in Alg. 2, similarly to an alternating
maximization approach such as EM.

Algorithm 2 Optimizing dynamic CE

Input: Positive samples A+, initial kernel L0, maxIter.
k ← 1
while k <maxIter and not converged do
A− ← GENERATEDYNAMICNEGATIVES(Lk, A+)
Lk+1 ← OPTIMIZECE(Lk,A+,A−)
k ← k + 1

end while
return Lk

Note that this approach bears strong similarities with GANs, in which both the generator and
discriminator evolve during training. Interestingly, the notion of dynamic negatives also appears in a
discussion by Goodfellow [22], where they are used as a theoretical tool to analyze the difference
between NCE and GANs.

Once the generated negative A− has been used in an iteration of the optimization of φCE, it is less
likely to be sampled again. Crucially, such dynamic negatives also avoid the problem alluded to in
Remark 2, since by construction they have a non-zero probability under PLk

at iteration k.

3.3 Static negatives

Conversely, we can simplify the optimization problem by considering a static negative distribution: ν
does not depend on the current kernel estimate.
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A considerable theoretical advantage of static negatives over dynamic negatives lies in their simpler
optimization problem: given a static ν, the optimization objective φCE does not evolve during training,
and is amenable to a simple invocation of stochastic gradient descent [8].

Note, however, that such distributions may suffer from the fundamental theoretical issue in Rem. 2,
and hence careful attention must be paid to ensure that the learning algorithm does not converge to a
spurious optimum that assigns a probability PL(A) = 0 to A ∈ A−. In practice, we observed that
the local nature of stochastic gradient ascent iterations was sufficient to avoid such behavior.

Let us now discuss two classical choices for fixed ν.

Product negatives. A common choice of negative distribution in other machine learning areas is
the product distribution, which is the standard “noise” distribution used in NCE. It is defined by

ν(A) =
∏

i∈A
p̂(i)

∏
i 6∈A

(1− p̂(i)) (6)

where p̂(i) is the empirical probability of {i} in A+. Although Mikolov et al. [35] report better
results by raising the p̂ to the power 3

4 , we did not observe any significant improvements when using
exponentiated power distributions; for this reason, by product negatives, we always indicate the
baseline distribution described by (6).

The product distribution is somewhat of mismatch for the DPP setting, as it lacks the crucial negative
association property of DPPs, which is what enables them to model the repulsive interactions between
similar items2.

Explicit negatives. Alternatively, we may have explicit knowledge of a class of subsets that our
model should not generate. For example, we might know that items i and j are very negatively
correlated and hence unlikely to co-occur. Additionally, we may know via user feedback that some
subsets generated by our model are inaccurate. We refer to negatives obtained using such outside
information as explicit negatives.

A fundamental advantage of explicit negatives is that they allow us to incorporate prior knowledge
and user feedback as part of the learning algorithm. The ability to incorporate such information, to
our knowledge, is in itself a novel contribution to DPP learning.

Although such knowledge may be costly and/or only available at rare intervals, note that a form of
continuous learning that would regularly update the state of our prior knowledge (and hence ν) would
bring the explicit negative distribution into the realm of dynamic distributions, as described by Alg. 2.

4 Efficient learning and prediction

We now describe how the Contrastive Estimation problem for DPPs can be optimized efficiently.

In order to efficiently generate dynamic negatives, which rely on DPP conditioning, we additionally
generalize the dual transformation leveraged in [37] to speed up basket-completion tasks with DPPs.
This speed-up impacts the broader use of DPPs, outside of CE learning.

4.1 Optimizing φCE

We propose to optimize the CE problem by exploiting a low-rank factorization of the kernel, writing
L = V V >, where V ∈ RM×K and K ≤M is the rank of the kernel, which is fixed a priori.

This factorization ensures that the estimated kernel remains positive semi-definite, and furthermore
enables us to leverage the low-rank computations derived in [18] and refined in [37]. Given the
similar forms of the MLE and CE objectives, we leverage the traditional stochastic gradient ascent
algorithm introduced by [18] to optimize (3). In the case of dynamic negatives, we re-generate the set
A− after each gradient step; note that less frequent updates are also possible if the negative generation
algorithm is very costly.

2Specifically, DPPs belong to the family of Strongly Rayleigh measures, which have been shown to verify a
broad range of negatively associated properties; we refer the interested reader to the fascinating body of work
by [38, 5, 6, 2–4].
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We furthermore augment φCE with a regularization term R(V ), defined as

R(V ) =
∑M

i=1

1

µi
‖vi‖22,

where µi is the number of occurrences of item i in the training set and vi is the corresponding row
vector of V .

This regularization tempers the strength of ‖vi‖2, a term interpretable as to the popularity of item i
[27, 19], based on its empirical popularity µi. Experimentally, we observe that adding R(V ) has a
strong impact on the predictive quality of our model.

The reader may wonder if other approaches to DPP learning are also applicable to the CE problem.

Remark 3. Gradient ascent algorithms require that the estimate L be projected onto the space of
positive semi-definite matrices; however, doing so can lead to almost-diagonal kernels [20] that
cannot model negative interactions. Riemannian gradient ascent methods were considered, but
deemed too computationally demanding by [32]. Furthermore, although it is tempting to generalize
the fixed-point approach of Mariet & Sra [32] to φCE, the update rule that ensues does not admit a
closed form solution, rendering it impractical (App. B).

The low-rank formulation allows us to apply CE (as well as NCE, as discussed in Section 5) to
learn large datasets such as the Belgian retail supermarket dataset (described in Section 5) without
prohibitive learning runtimes. We show below that by leveraging the idea described in [37], the
low-rank formulation can also lead to additional speed ups during prediction.

4.2 Efficient conditioning for predictions

Dynamic negatives rely upon conditioning a DPP on a chosen sample A (see Alg. 1: PLk
(A− ∪ {j})

can be efficiently computed for all j by a preprocessing step that conditions Lk on set A−). For this
reason, we now describe how low-rank DPP conditioning can be significantly sped up.

In [18], conditioning has a cost of O(K|Ā|2+|A|3), where Ā = Y −A. Since |Y|�|A| for many
datasets, this represents a significant bottleneck for conditioning and computing next-item predictions
for a set. We show here that through use of the dual transformation of the low-rank DPP kernel, we
can reduce this complexity.

Proposition 1. Given A ⊆ {1, . . . ,M} and a DPP of rank K parametrized by V , where L =
V V >, we can derive the conditional marginal probabilities in the DPP parametrization LA in
O(K3 + |A|3+K2|A|2+|Ā|K2) time.

Proof. As described in [19], we begin by computing the dual low-rank DPP kernel C = B>B,
where B = V >. We then compute

CA = BA(BA)> = ZACZA,

with ZA = I −BA(B>ABA)−1B>A , and where CA is the DPP kernel conditioned on the event that
all of the elements in set A are observed, and BA is the restriction of B to the rows and columns
indexed by elements in A.

Computing CA has a computational complexity of O(K3 + |A|3+K2|A|2). Next, following [27],
we eigendecompose CA to compute the conditional (marginal) probability Pi of every possible item
i in Ā:

Pi =

K∑
n=1

λn
λn + 1

(
1√
λn

bAi v̂n

)2

where bAi is the column vector from BA for item i, λn is an eigenvalue of CA, and v̂n is the
corresponding eigenvector.

The computational complexity for computing the eigendecomposition is O(K3), and computing
Pi for all items in Ā costs O(|Ā|K2). Therefore, we have an overall computational complexity of
O(K3 + |A|3+K2|A|2+|Ā|K2) for computing next-item conditionals/predictions for the low-rank
DPP using the dual kernel, which is significantly superior to the typical cost of O(K|Ā|2+|A|3).
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Table 1: Mean MPR and precision values for LOWRANK, and baseline improvement on LOWRANK
for other methods. Positive values indicate the relevant metric performs better than LOWRANK,
and bold values indicate improvement over LOWRANK that lies outside the standard deviation
estimate. Experiments were run 5 times, with a negative to positive ratio of 1

2 and α set to its optimal
LOWRANK value for the Amazon registries and to 1 for the Belgian dataset. The MPR improvement
on the Belgian dataset in particular is significant (see Section 5.2 for details).

(a) AMAZON REGISTRIES

Improvement over LOWRANK

Metric LOWRANK DYN EXP NCE

MPR 70.50 0.92 ± 0.56 0.68 ± 0.62 0.86 ± 0.55
p@1 9.96 0.67 ± 0.75 0.58 ± 0.76 0.20 ± 1.75
p@5 25.36 1.04 ± 0.82 0.78 ± 0.67 0.67 ± 1.09

p@10 36.50 1.39 ± 0.85 1.13 ± 0.79 0.97 ± 1.18
p@20 51.22 1.38 ± 0.97 1.28 ± 1.11 1.35 ± 1.20

(b) BELGIAN DATASET

Improvement over LOWRANK

LOWRANK EXP DYN

79.62 9.40 ± 0.28 9.38 ± 0.30
13.23 -0.25 ± 0.39 -0.05 ± 0.25
21.94 -0.04 ± 0.27 0.05 ± 0.55
23.85 -0.57 ± 0.22 -0.61 ± 0.44
25.64 -0.22 ± 0.34 -0.31 ± 0.47

As in most cases K � |Ā|, this represents a substantial improvement in the efficiency of DPP
conditioning, and allows us to perform conditioning with complexity that is essentially linear in the
size of the item catalog.

5 Experiments

We run experiments on two item recommendation datasets for DPP evaluation: the Amazon Baby
Registry dataset [20], which has become a standard dataset for DPP modeling [32, 18] (described
further in App. A), and the Belgian Retail Supermarket dataset3, which contains 88,163 subsets, of a
total of 16,470 unique items, collected as described in [10, 9]. We conduct an extensive experimental
analysis on the smaller Amazon Registry dataset, and then use findings obtained from this analysis
regarding appropriate hyperparameter settings to conduct experiments on the larger Belgian Retail
dataset.

We compare the following Contrastive Estimation approaches:

– EXP: explicit negatives learned with CE. As to our knowledge there are no datasets with
available explicit negative information, we generate approximations of explicit negatives
by removing one item from a positive sample and replacing it with the least likely item
(Additional details are provided in Appendix C).

– DYN: dynamic negatives learned with CE.
– PROD: product negatives learned with CE.

As our work revolves around improving DPP performance, we focus on the two following baselines:

– NCE: Noise Contrastive Estimation with product negatives.
– LOWRANK: the standard low-rank DPP stochastic gradient ascent algorithm from [18].

NCE learns a model by contrasting A+ with negative samples drawn from a different but related
“noisy” distribution pn. Rather than explicitly minimizing the likelihood assigned to A−, NCE trains
the model to distinguish between samples drawn from µ and samples drawn from pn by maximizing
the following conditional log-likelihood:

(7)φNCE(L) =
∑
A∈A+

logP (A ∈ A+ | A) +
∑
A∈A−

logP (A ∈ A− | A).

NCE has gained popularity due to its ability to model distributions µ for which the normalization
coefficient is unknown, and has been shown to be a powerful technique to improve submodular
models for recommendation [43]. We learn the NCE objective with stochastic gradient ascent for our

3http://fimi.ua.ac.be/data/retail.pdf
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Figure 1: Absolute improvement of the MPR and precision@10 metrics for all methods on test data,
compared to LOWRANK; error bars show standard deviation estimates. The numerical results indicate
the baseline LOWRANK values for the metrics on each dataset. We set the negative to positive ratio to
1
2 and set α to its optimal LOWRANK value; we use a low-rank matrix with K = 30 and minibatches
of 200 positive samples. CE-based learning with dynamic or explicit negatives consistently improve
the quality of the DPP model, whereas NCE provides less significant improvements.

low-rank model, since∇ log Pr(A ∈ A∗|A,V V >) is given by(
ε∗ − 1

1 + |A−|
|A+|pn(A)/PV V >(A)

)
∇V logPV V >(A). (8)

where ε∗ = 1 if A∗ = A+ and 0 otherwise.

The performance of all methods are compared using standard recommender system metrics: Mean
Percentile Rank (MPR), and precision at k.

MPR is a recall-based metric which evaluates the model’s predictive power by measuring how well
it predicts the next item in a basket, and is a standard choice for recommender systems [24, 29].
Specifically, given a set A, let pi,A = Pr(A ∪ {i} | A). The percentile rank of an item i given a set
A is defined as

PRj,A =

∑
i′ 6∈A 1(pi,A ≥ pi′,A)

|Y\A|
× 100%,

where Y\A indicates those elements in the ground set Y that are not found in A, and we evaluate the
MPR as

1

|T |
∑
A∈T

1

|A|
∑
i∈A

PRi,A\{i}.

where T is the set of test instances. A MPR of 50 is equivalent to random selection; a MPR of 100
indicates that the model perfectly predicts the held out item. Precision at k measures how likely the
model is to include the held-out item in its choice of top k completions; we evaluate it as

p@k =
1

|T |
∑
A∈T

1

|A|
∑
i∈A

1[rank(i | A\{i}) ≤ k].

5.1 Amazon Baby Registries

For each category in the Amazon registries, all algorithms were tested on the 7 largest product
categories.4 80% of subsets are used for training, and the remaining 20% served as test. All

4The smaller datasets, which comprise 7000 or less training samples (the “toys” dataset has exactly 7051),
led to inconsistent results due to their size.
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Table 2: Runtime to convergence, in seconds. Experiments were run on the feeding Amazon registry,
with α = 1, a negative to positive ratio of 1

2 , and K = 30.

METHOD LOWRANK EXP DYN NCE

RUNTIME 0.83 ± 0.54 2.69 ± 0.02 7.13 ± 0.28 27.59 ± 2.20

experimental results are averaged over 5 learning trials using different initial matrices, of rank
K = 30.

In Table 1(a) and Figure 1, we compare the performance of the various learning algorithms. The
regularization strength α is set to its optimal value for the LOWRANK algorithm, and we set
|A−|/|A+|= 1/2. This allows us to compare the typical performance of the low-rank DPP al-
gorithm to its “augmented” negative versions without hyper-parameter tuning. As PROD performs
significantly worse than LOWRANK, we do not include it in further experiments.

Compared to traditional stochastic gradient ascent methods, algorithms that use inferred negatives
perform (aside from PROD) better across all metrics on all datasets (additional results with other
standard recommendation metrics are available in App. D.2). DYN and EXP provide consistent
improvements compared to the other methods, whereas NCE shows a higher variance and slightly
worse performance.

Note that improvements observed using DYN and EXP are larger than the loss in performance due to
going from full-rank to low-rank kernels reported in [18].

We also investigated the performance of CE when mixing the source of the negatives: given the
strong performance of DYN and EXP, we evaluated various ratios of dynamic to explicit negatives;
as the performance of these mixed methods scales as expected between the two extremes, we only
include the results for DYNEXP90, which corresponds to 90% dynamic negatives and 10% explicit
negatives. We see from Fig. 2 that the combination of dynamic and explicit negatives generally has a
positive influence, as it performs better than the worst of either DYN or EXP. As such, it provides us
with a more robust alternative.

Finally, we also compared all methods when tuning both the regularization α and the negative to
positive ratio |A

−|
|A+| , but did not see any significant improvements. As this suggests there is no need to

do additional hyper-parameter tuning when using CE, we fix |A
−|

|A+| = 1
2 for all experiments.

Table 2 reports the average time to convergence for each method. As generating the dynamic negatives
has a high complexity due to the cost of conditioning a DPP on different subsets, we see that DYN is
2.7x slower than EXP. LOWRANK is the fastest method, as it does not need to generate or process
any negative samples. Finally, NCE is significantly more time-consuming than all the other methods,
due to the additional complexity of computing the gradient.

We see from the results in Fig. 1 that DYN provides better performance than EXP on the MPR metric
for several registry categories. On average, learning the DPP kernel via CE with dynamic or explicit
negatives stand out as the best methods to obtain high predictive quality. Improvements in predictive
quality provided by DYN come at the price of a marginally slower algorithm; this trade-off can be
improved by adding a fraction of explicit negatives to the dynamic ones, as shown in Fig. 1.

5.2 Belgian Retail Dataset

As with the Amazon registries, we sample 80% of the Belgian Retail dataset for training + validation,
and use the remaining 20% for testing. Following [17], we set K = 76 trait dimensions for the
low-rank DPP, as the largest subset in this dataset is of size 76.

Once again, each experiment is run 5 times with different initializations. Following the results on the
smaller Amazon registries dataset, we fix the ratio of negatives to positives to |A

−|
|A+| = 0.5 and set

α = 1. Furthermore, given the significantly longer runtime of NCE, which is not compensated by
consistent improvement in predictive quality, we do not evaluate it on the Belgian dataset.
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Numerical results are provided in Table 1(b), and show that the negative methods give a significant
improvement in performance over LOWRANK on MPR, with both DYN and EXP performing almost
10 points higher on the MPR metric. This is a striking improvement, compounded by small standard
deviations confirming that these results are robust to different matrix initializations. Although we
see no improvement on the precision@k metrics, MPR and precision@k are not always correlated:
it is possible to improve the mean rank of all predictions without significantly affecting the top-k
predictions (particularly for smaller values of k), since MPR scales with the size of the item catalog,
while precision@k for a fixed k does not.

The gap between DYN and EXP observed on the Amazon dataset vanishes, suggesting that with the
availability of more training data, EXP is preferable due to its more favorable runtime.

6 Conclusion and future work

We introduce the Contrastive Estimation (CE) optimization problem, which optimizes the difference
of the traditional DPP log-likelihood and the expectation of the DPP model’s log-likelihood under a
negative distribution ν. This increases the DPP’s fit to the data while simultaneously incorporating
inferred or explicit domain knowledge into the learning procedure.

We show that CE lends itself to intuitively similar but theoretically different variants, depending on
the choice of ν: a static negative distribution leads to significantly faster learning but allows spurious
optima; conversely, allowing ν to evolve along with model parameters limits overfitting at the cost
of a more complex optimization problem. Note that the question of optimizing dynamic CE is in of
itself a theoretical problem worthy of independent study.

Additionally, we show that low-rank DPP conditioning complexity can be improved by a factor of M
by leveraging the dual representation of the low-rank kernel. This not only improves prediction speed
on a trained model, but allows for more efficient dynamic negative generation.

Experimentally, we show that CE with dynamic and explicit negatives provide comparable and
significant improvements in the predictive performance of DPPs.

Our analysis also raises both theoretical and practical questions: in particular, a key component
of future work lies in better understanding how explicit domain knowledge can be combined with
dynamic and static negatives. Furthermore, the CE formulation in Eq. (5) suggests the possibility of
using continuous labels to reflect the more general concept of weighted samples within Contrastive
Estimation.
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A Amazon Baby Registries description

Table 3: Numerical details for the Amazon Baby registries dataset.

REGISTRY M TRAIN SIZE TEST SIZE

HEALTH 62 5278 1320
BATH 100 5510 1377
APPAREL 100 6482 1620
BEDDING 100 7119 1780
DIAPER 100 8403 2101
GEAR 100 7089 1772
FEEDING 100 10,090 2522

B Contrastive Estimation with the Picard iteration

Letting β = |A+|−|A−|≥ 0 and writing UA as the M × |A| indicator matrix such that LA =
U>ALUA, we have

φ(L) ∝ −β log det(I + X) +
∑
A∈A+

log det(U>AX−1UA)︸ ︷︷ ︸
f convex

+β log det(X)−
∑
A∈A−

log det(U>AX−1UA)︸ ︷︷ ︸
g concave

where the convexity/concavity results follow immediately from [32, Lemma 2.3]. Then, the update
rule∇f(Lk+1) = −∇g(Lk) requires

βLk+1 +
∑

A ∈A−
Lk+1UA(U>ALk+1UA)−1U>ALk+1

← β(I + L−1k )−1 +
∑
A∈A+

LkUA(U>ALkUA)−1U>ALk

which cannot be evaluated due to the
∑
A∈A− term.

C Approximating explicit negatives

We use the empirical marginal distribution of items in the positive samples as a basis for approximating
an explicit negative. For a given positive set A+, we sample two items i, j ∈ A+, and replace j with
the item k 6∈ A+ such that the empirical probability of observing items i and k in the same set is
unlikely.

Algorithm 3 Approximate explicit negative

input: Positive sample A+

Sample i 6= j ∈ A+ w.p. pi ∝ P̂ ({i})
Sample k 6∈ A+ w.p. pk ∝ 1− P̂ ({i, k}).
return (A+\{j}) ∪ {k}

This allows us to approximate true explicit negatives, as we use the empirical data to derive “im-
plausible” sets. Note, however, that when using such negatives, we have no guarantee that objective
function will be well behaved, as opposed to the theoretically grounded use of dynamic negatives.
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D Additional experimental results
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Figure 2: Test precisions@k for all methods using a negative to positive ratio of 1/2 and the optimal
α value for LOWRANK on the baby registries datasets.
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