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Abstract
Determinantal Point Processes (DPPs) have attracted significant interest in ma-
chine learning due to their ability to elegantly and tractably model the balance
between quality and diversity of sets. We consider here the key task of learning
DPPs from data; we introduce a novel optimization problem, Contrastive Esti-
mation (CE), which encodes information about “negative” samples into the basic
learning model. CE is grounded in the successful use of negative information in
machine-vision and language modeling. Depending on the chosen negative dis-
tribution (which may be static or evolve during optimization), CE assumes two
different forms, which we analyze theoretically. Experimentally, we show that CE
learning delivers a considerable improvement in DPP predictive performance.

1 Introduction and related work
Careful selection of items from a large collection underlies many machine learning applications. No-
table examples include recommender systems, information retrieval and automatic summarization
methods, among others. Typically, the selected set of items must fulfill a variety of application spe-
cific requirements—e.g., when recommending items to a user, the quality of each selected item is
important. This quality must be, however, balanced by the diversity of the selected items to avoid
redundancy within recommendations.

But balancing quality with diversity is challenging: as the collection size grows, the number of its
subsets grows exponentially. A model that offers an elegant, tractable way to achieve this balance
is a Determinantal Point Process (DPP). Concretely, a DPP models a distribution over subsets of a
ground set Y that is parametrized by a semi-definite matrix L ∈ R|Y|×|Y|, such that for any A ⊆ Y ,

Pr(A) ∝ det(LA), (1)
where LA = [Lij ]i,j∈A is the submatrix of L indexed by A. First introduced to model fermion be-
havior by Macchi [23], DPPs have gained popularity due to their elegant balancing of quality and sub-
set diversity. DPPs are studied both for their theoretical properties [19, 2, 1, 18, 12, 8, 20] and their
machine learning applications: object retrieval [1], summarization [22, 6], sensor placement [17],
recommender systems [10], neural network compression [25], and minibatch selection [34].

The key object defining a DPP is its kernel matrix L. This matrix may be fixed a priori using domain
knowledge [2] or learned from observations using maximum likelihood estimation (MLE) [13, 24].
However, while fitting observed subsets well, MLE for DPPs may also assign high likelihoods to
unobserved subsets far from the underlying generative distribution [6]. Such confusable modes
reduce the quality of the learned model, hurting predictions (see Figure 1).

These observations motivate us to investigate DPP-generated samples with added perturbations as
negatives, which we incorporate into the learning task to improve the modeling power of DPPs. As
there is no closed form way to generate such idealized negatives, we approximate them via an ex-
ternal “negative distribution”. Aside from [33, 9], little attention has been given to using negative
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Figure 1: Results on a toy dataset generated by replicating the baskets {1, 2} and {3, 4} 1000 times each.
We train each model to convergence, then compute the next-item probabilities for each pair, along with the
symmetric KL divergence over areas of shared support between predictive and empirical next-item distributions.
Experiments were run 10 times, with |A+|/|A−| set to the optimal value for each model; α is set to its optimal
LR value. LR (low-rank DPP) assigns high predictive probabilities to modes for incorrect predictions, resulting
in higher symmetric KL divergence and high variances. The DYN and EXP methods we introduce reduce this
issue, resulting in predictive distributions closer to the true distribution and smaller variances.

samples to learn richer subset-selection models. Nonetheless, leveraging negative information is
widely used in other applications. In object detection, negative mining trains the model on its false
positives [32, 5, 29]. In language modeling, Noise Contrastive Estimation (NCE) [15] was first ap-
plied in [27] and has been instrumental in Word2Vec [26]. An alternate approach within submodular
language models was introduced as Contrastive Estimation in [30, 31].

We introduce a novel DPP learning problem that incorporates samples from a negative distribution
into traditional MLE. While the focus of our work is on generating the negative distribution jointly
with L, we also investigate outside sources of negative information. Ultimately, our formulation
leads to an optimization problem harder than the original DPP learning problem; we show that even
approximate solutions greatly improve the performance of the DPP model.

2 Learning DPPs with negative samples
Motivated by the similarities between DPP learning and crucial structured prediction problems in
other ML fields, we introduce an optimization problem that leverages negative information. We
refer to this problem as Contrastive Estimation (CE) due to its ties to a notion discussed in [30].

2.1 Contrastive Estimation

In conventional DPP learning, we seek to maximize determinantal volumes of sets drawn from the
true distribution µ (that we wish to model), by solving the following MLE problem, where samples
in the training set A+ are assumed to be drawn i.i.d.:

Find L ∈ argmax
L⪰0

ϕMLE(L) ≜ 1
|A+|

∑
A∈A+

log det(LA)− log det(L+ I). (2)

We augment problem (2) to incorporate additional information from a negative distribution ν, which
we wish to have the DPP distribution move away from. The ensuing optimization problem is the
main focus of our paper.
Definition 1 (Contrastive Estimation). Given a training set of positive samples A+ on which ϕMLE
is defined and a negative distribution ν over 2Y , we call Contrastive Estimation the problem

Find L ∈ argmax
L⪰0

ϕCE(L) ≜ ϕMLE(L)− EA∼ν [logPL(A)], (3)

where we write PL(A) ≡ det(LA)/det(L+ I).

The expectation can be approximated by drawing a set of samples A− from ν: ϕCE then becomes1

ϕCE(L) = 1
|A+|

∑
A∈A+

logPL(A)− 1
|A−|

∑
A∈A−

logPL(A) (4)
1With a slight abuse of notation, we continue writing ϕCE despite the sample approximation to EA∼ν [·].
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Remark 1. CE is a non-convex optimization problem, and thus admits the same guarantees as DPP
MLE learning when learned using Stochastic Gradient Ascent with decreasing step sizes; however,
the convergence rate will depend on the choice of ν.

Indeed, to fully specify the CE problem one must first choose the negative distribution ν, or equiv-
alently, choose a procedure to generate negative samples to obtain (4). We consider below two
classes of distributions ν with considerably different ramifications: dynamic and static negatives;
their analysis is the focus of the next two sections.

2.2 Dynamic negatives
In most applications leveraging negative information (e.g., negative mining, GANs), negative sam-
ples evolve over time based on the state of the learned model. We call any ν that depends on the state
of the model a dynamic negative distribution: at iteration k of the learning procedure with kernel
estimate Lk, we use a ν parametrized by Lk.

More specifically, we focus on the setting where negative samples themselves are generated by the
current DPP, with the goal of reducing overfitting. Given a positive sample A+, we generate a
negative A− by replacing i ∈ A+ with j that yields a high probability PLk

(A+\{i}∪ {j}) (Alg. 1).
We generate the samples probabilistically rather than via mode maximization so that a sample A+

can lead to different A− negatives when we generate more negatives than positives.

As ν evolves along with Lk, the second term of ϕCE acts as a moving target that must be continuously
estimated during the learning procedure. For this reason, we choose to optimize ϕCE by a two-step
procedure described in Alg. 2, similarly to an alternating maximization approach such as EM.

Note that this approach bears strong similarities with GANs, in which both the generator and dis-
criminator evolve during training (dynamic negatives also appear in a discussion by Goodfellow [14]
as a theoretical tool to analyze the difference between NCE and GANs). Once a negative A− has
been used in an iteration of the optimization of ϕCE, it is less likely to be sampled again.2

2.3 Static negatives
Conversely, we can simplify the optimization problem by considering a static negative distribution:
ν does not depend on the current kernel estimate. A considerable theoretical advantage of static
negatives lies in the simpler optimization problem: the optimization objective ϕCE does not evolve
during training, and is amenable to a simple invocation of stochastic gradient descent [4].
Theorem 1. Let ν be a static distribution over 2Y and let k > 0 be such that k ≥ max{|S|: S ∈
A+ ∪ supp(ν)}. Let K be a bounded subspace of all |Y|×|Y| positive semi-definite matrices of
rank k. Projected stochastic gradient ascent applied to the CE objective with negative distribution
ν and space K with step sizes ηi such that

∑
ηi =∞,

∑
η2i <∞ will converge to a critical point.

Unlike dynamic negatives, careful attention must be paid to ensure that the learning algorithm does
not converge to a spurious optimum that assigns PL(A) = 0 to A ∈ A−. In practice, we observed
that the local nature of stochastic gradient ascent iterations was sufficient to avoid such behavior.

We may have prior knowledge of a class of subsets that our model should not generate. For example,
we might know that items i and j are negatively correlated and hence unlikely to co-occur. We
may also learn via user feedback that some generated subsets are inaccurate. We refer to negatives
obtained using such outside information as explicit negatives. A fundamental advantage of explicit
negatives is that they allow us to incorporate prior knowledge and user feedback during learning.

2.4 Efficient learning and prediction
We propose to optimize the CE problem by exploiting a low-rank factorization of the kernel, writing
L = V V ⊤, where V ∈ R|Y|×K and K ≤ |Y| is the rank of the kernel, which is fixed a priori.
This factorization ensures that the estimated kernel remains positive semi-definite, and enables us to
leverage the low-rank computations derived in [11] and refined in [28]. Given the similar forms of
the MLE and CE objectives, we use the traditional stochastic gradient ascent algorithm introduced
by [11] to optimize (3). In the case of dynamic negatives, we re-generate A− after each gradient
step; less frequent updates are also possible if the negative generation algorithm is very costly.

The low-rank formulation allows us to apply CE (and the NCE baseline) to large datasets without
prohibitive runtimes. We show in App. C that this formulation can also lead to additional speed

2If A− happens to be a false negative (i.e. appears in A+), A− will be comparatively sampled more
frequently as a positive, and so will contribute on average as a positive sample. Additional precautions such as
the ones mentioned in [3] can also be leveraged if necessary.
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(a) UK dataset
Improvement over LR

Metric LR EXP DYN

MPR 80.07 3.75 ± 0.16 3.74 ± 0.16
AUC 0.57297 0.41465 ± 0.01334 0.41467 ± 0.01339

(b) Belgian dataset
Improvement over LR

LR EXP DYN

79.62 9.40 ± 0.28 9.38 ± 0.30
0.6159 0.3705 ± 3.287e-4 0.3707 ± 3.140e-4

Table 1: Results over the UK and Belgian datasets. Both explicit and dynamic CE obtain significant improve-
ments in MPR and AUC metrics, confirming that CE learning enhances recommender value of the model and
its ability to distinguish data drawn from the target distribution from fake samples.

ups during prediction. We augment ϕCE with a regularization term R(V ) as in [11], defined as
R(V ) = α

∑|Y|
i=1

1
µi
∥vi∥22, where µi counts the occurrences of item i in the training set, vi is i-th

row vector of V , and α > 0 is a tunable hyperparameter. This tempers the strength of ∥vi∥2, a term
interpretable as to the popularity of item i [19, 12] based on its empirical popularity µi.

3 Experiments

We run next-item prediction and AUC-based classification experiments on two recommendation
datasets of purchased shopping baskets: the UK retail dataset [7] and the large Belgian Retail
Supermarket dataset.3 We compare explicit (EXP) and dynamic CE (DYN) to standard low-rank
(LR) learning [11]. We saw that one iteration of NCE [33] required nearly 11 hours on the Belgian
dataset (compared to 5 minutes for one iteration of CE); see Appendix E for details. For this reason,
we remove NCE as a baseline from all experiments, as it is not feasible in the general case. As to
our knowledge there are no datasets with explicit negative information, we generate approximations
of explicit negatives by replacing one item in each positive sample by the least likely item (Alg. 3).

DPPs are a commonly accepted modeling tool for recommender systems that require balancing di-
versity and quality. For this reason, we focus on evaluating the performance of all methods are
compared using the standard MPR (Mean Percentile Rank) metric (see App. D) for recommender
systems [16, 21]. An MPR of 50 is equivalent to random selection; a MPR of 100 indicates that
the model perfectly predicts the held out item. We also evaluate the discriminative power of each
model using the AUC metric. For this task, we generate a set of fake subsets uniformly at random,
then compute the AUC for the model’s ability to discriminate between true and fake subsets. Fol-
lowing [10], for both the UK and Belgian datasets, we set the rank K of the kernel to be the size
of the largest subset in the dataset (K=100 for the UK dataset, K=76 for the Belgian dataset); this
optimizes memory costs while still modeling all ground-truth subsets. Based on our results on the
smaller Amazon dataset (App. F), we fix |A−|/|A+|= 0.5 and α = 1.

Tables 1 (a) and (b) summarize our results; the DYN and EXP negative methods show a striking
MPR and AUC improvement over LR. These results suggest that for larger datasets, CE is effective
at improving predictive and discriminative power for DPPs.

4 Conclusion and future work

We introduce the Contrastive Estimation (CE) optimization problem, which optimizes the difference
of the traditional DPP log-likelihood and the expectation of the DPP model’s log-likelihood under a
negative distribution ν. This increases the DPP’s fit to the data, while simultaneously incorporating
inferred or explicit domain knowledge into the learning procedure.

CE lends itself to intuitively similar but theoretically different variants, depending on the choice of
ν: a static ν leads to significantly faster learning but allows spurious optima; conversely, allowing ν
to evolve along with model parameters limits overfitting at the cost of a more complex optimization
problem. Optimizing dynamic CE is in of itself a theoretical problem worthy of independent study.

Experimentally, we show that CE with dynamic and explicit negatives provide comparable, signifi-
cant improvements in the predictive performance of DPPs, as well as on the learned DPP’s ability to
discriminate between real and randomly generated subsets.

Acknowledgements. This work was partially supported by a Criteo Faculty Research Award, and
NSF-IIS-1409802.

3http://fimi.ua.ac.be/data/retail.pdf

4

http://fimi.ua.ac.be/data/retail.pdf


References
[1] R. Affandi, E. Fox, R. Adams, and B. Taskar. Learning the parameters of Determinantal Point

Process kernels. In ICML, 2014.

[2] Alexei Borodin. Determinantal Point Processes. arXiv:0911.1153, 2009.

[3] Avishek Bose, Huan Ling, and Yanshuai Cao. Adversarial contrastive estimation. arXiv
preprint arXiv:1805.03642, 2018.

[4] Léon Bottou. On-line learning in neural networks. Cambridge University Press, 1998.

[5] Olivier Canévet and Francois Fleuret. Efficient Sample Mining for Object Detection. In ACML,
JMLR: Workshop and Conference Proceedings, 2014.

[6] Wei-Lun Chao, Boqing Gong, Kristen Grauman, and Fei Sha. Large-margin Determinantal
Point Processes. In Uncertainty in Artificial Intelligence (UAI), 2015.

[7] D Chen. Data mining for the online retail industry: A case study of rfm model-based cus-
tomer segmentation using data mining. Journal of Database Marketing and Customer Strategy
Management, 19(3), August 2012.

[8] Laurent Decreusefond, Ian Flint, Nicolas Privault, and Giovanni Luca Torrisi. Determinantal
Point Processes, 2015.

[9] Josip Djolonga, Sebastian Tschiatschek, and Andreas Krause. Variational inference in mixed
probabilistic submodular models. In NIPS. Curran Associates, Inc., 2016.

[10] Mike Gartrell, Ulrich Paquet, and Noam Koenigstein. Bayesian low-rank Determinantal Point
Processes. In Shilad Sen, Werner Geyer, Jill Freyne, and Pablo Castells, editors, RecSys. ACM,
2016.

[11] Mike Gartrell, Ulrich Paquet, and Noam Koenigstein. Low-rank factorization of Determinantal
Point Processes. In AAAI, 2017.

[12] J. Gillenwater. Approximate Inference for Determinantal Point Processes. PhD thesis, Univer-
sity of Pennsylvania, 2014.

[13] J. Gillenwater, A. Kulesza, E. Fox, and B. Taskar. Expectation-maximization for learning
Determinantal Point Processes. In NIPS, 2014.

[14] Ian J. Goodfellow. On distinguishability criteria for estimating generative models, 2014.

[15] Michael U. Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized sta-
tistical models, with applications to natural image statistics. J. Mach. Learn. Res., 13, February
2012. ISSN 1532-4435.

[16] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In ICDM, 2008.

[17] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in Gaussian
processes: theory, efficient algorithms and empirical studies. JMLR, 9, 2008.

[18] A. Kulesza. Learning with Determinantal Point Processes. PhD thesis, University of Pennsyl-
vania, 2013.

[19] A. Kulesza and B. Taskar. Determinantal Point Processes for machine learning, volume 5.
Foundations and Trends in Machine Learning, 2012.

[20] Frédéric Lavancier, Jesper Møller, and Ege Rubak. Determinantal Point Process models and
statistical inference. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 77(4), 2015.

[21] Yanen Li, Jia Hu, ChengXiang Zhai, and Ye Chen. Improving one-class collaborative filtering
by incorporating rich user information. In CIKM, 2010.

[22] H. Lin and J. Bilmes. Learning mixtures of submodular shells with application to document
summarization. In UAI, 2012.

5



[23] O. Macchi. The coincidence approach to stochastic point processes. Adv. Appl. Prob., 7(1),
1975.

[24] Zelda Mariet and Suvrit Sra. Fixed-point algorithms for learning Determinantal Point Pro-
cesses. In ICML, 2015.

[25] Zelda Mariet and Suvrit Sra. Diversity networks. Int. Conf. on Learning Representations
(ICLR), 2016.

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In NIPS. 2013.

[27] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic
language models. In ICML, 2012.

[28] Takayuki Osogami, Rudy Raymond, Akshay Goel, Tomoyuki Shirai, and Takanori Maehara.
Dynamic Determinantal Point Processes. In AAAI, 2018.

[29] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detec-
tors with online hard example mining. In CVPR, 2016.

[30] Noah A. Smith and Jason Eisner. Guiding unsupervised grammar induction using contrastive
estimation. In In Proc. of IJCAI Workshop on Grammatical Inference Applications, 2005.

[31] Noah A. Smith and Jason Eisner. Contrastive estimation: Training log-linear models on unla-
beled data. In ACL, ACL ’05, 2005.

[32] Kah Kay Sung. Learning and Example Selection for Object and Pattern Detection. PhD thesis,
Massachusetts Institute of Technology, 1996.

[33] Sebastian Tschiatschek, Josip Djolonga, and Andreas Krause. Learning probabilistic submod-
ular diversity models via noise contrastive estimation. In AISTATS, 2016.

[34] Cheng Zhang, Hedvig Kjellström, and Stephan Mandt. Stochastic learning on imbalanced data:
Determinantal Point Processes for mini-batch diversification. CoRR, abs/1705.00607, 2017.

6



A Contrastive Estimation with the Picard iteration

Letting β = |A+|−|A−|≥ 0 and writing UA as the M × |A| indicator matrix such that LA =
U⊤

ALUA, we have

ϕ(L) ∝−β log det(I +X) +
∑

A∈A+

log det(U⊤
AX−1UA)︸ ︷︷ ︸

f convex

+ β log det(X)−
∑

A∈A−

log det(U⊤
AX−1UA)︸ ︷︷ ︸

g concave

where the convexity/concavity results follow immediately from [24, Lemma 2.3]. Then, the update
rule∇f(Lk+1) = −∇g(Lk) requires

βLk+1 +
∑

A∈A−

Lk+1UA(U
⊤
ALk+1UA)

−1U⊤
ALk+1

← β(I +L−1
k )−1 +

∑
A∈A+

LkUA(U
⊤
ALkUA)

−1U⊤
ALk

which cannot be evaluated due to the
∑

A∈A− term.

B Algorithms

Algorithm 1 Generate dynamic negative

Input: Positive sample A+, current kernel Lk

Sample i ∈ A+ prop. to its empirical probability in A+

A− := A+\{i}
Sample j w.p. proportional to PLk

(A− ∪ {j})
A− ← A− ∪ {j}
return A−

Algorithm 2 Optimizing dynamic CE

Input: Positive samples A+, initial kernel L0, maxIter.
k ← 1
while k ++ < maxIter and not converged do
A− ← GENERATEDYNAMICNEGATIVES(Lk, A+)
Lk+1 ← OPTIMIZECE(Lk,A+,A−)

end while
return Lk

Algorithm 3 Approximate explicit negative generation

input: Positive sample A+

Sample i ̸= j ∈ A+ w.p. pi ∝ P̂ ({i})
Sample k ̸∈ A+ w.p. pk ∝ 1− P̂ ({i, k}).
return (A+\{j}) ∪ {k}

C Efficient conditioning for predictions

Dynamic negatives rely upon conditioning a DPP on a chosen sample A (see Alg. 1: PLk
(A−∪{j})

can be efficiently computed for all j by a preprocessing step that conditions Lk on set A−). For this
reason, we now describe how low-rank DPP conditioning can be significantly sped up.
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In [11], conditioning has a cost of O(K|Ā|2+|A|3), where Ā = Y − A. Since |Y|≫ |A| for
many datasets, this represents a significant bottleneck for conditioning and computing next-item
predictions for a set. We show here that this complexity can be brought down significantly.
Proposition 1. Given A ⊆ {1, . . . ,M} and a DPP of rank K parametrized by V , where L =
V V ⊤, we can derive the conditional marginal probabilities in the DPP parametrization LA in only
O(K3 + |A|3+K2|A|2+|Ā|K2) time.

As in most cases K ≪ |Ā|, this represents a substantial improvement, allowing us condition in time
essentially linear in the size of the item catalog.

D Mean Percentile Rank (MPR)

MPR is a recall-based metric which evaluates the model’s predictive power by measuring how well
it predicts the next item in a basket, and is a standard choice for recommender systems [16, 21].

Specifically, given a set A, let pi,A = Pr(A ∪ {i} | A). The percentile rank of an item i given a set
A is defined as

PRj,A =

∑
i′ ̸∈A 1(pi,A ≥ pi′,A)

|Y\A|
× 100%

The MPR is then computed as

MPR =
1

|T |
∑
A∈T

PRi,A\{i}

where T is the set of test instances and i is a randomly selected element in each set A. An MPR of
50 is equivalent to random selection; a MPR of 100 indicates that the model perfectly predicts the
held out item.

E Noise Contrastive Estimation (NCE)

NCE learns a model by contrastingA+ with negatives drawn from a “noisy” distribution pn, training
the model to distinguish between sets drawn from µ and sets drawn from pn. NCE has gained
popularity due to its ability to model distributions µ with untractable normalization coefficients, and
has been shown to be a powerful technique to improve submodular recommendation models [33].
NCE learns by maximizing the following conditional log-likelihood:

ϕNCE(L) =
∑

A∈A+

logP (A ∈ A+ | A)

+
∑

A∈A−

logP (A ∈ A− | A). (5)

In our experiments, we learn the NCE objective with stochastic gradient ascent for our low-rank
model, since∇ log Pr(A ∈ A∗|A,V V ⊤) is given by(

ϵ∗ −
(
1 +
|A−|
|A+|

pn(A)

PV V ⊤(A)

)−1)
∇V logPV V ⊤(A). (6)

where ϵ∗ = 1 if A∗ = A+ and 0 otherwise.

F Amazon Baby registries experiments

In Tab. 3(a), we compare the performance of the various algorithms with rank K = 30. The regular-
ization strength α is set to its optimal value for the LR algorithm, and |A−|/|A+|= 1/2. This allows
us to compare the LR algorithm to its “augmented” negative versions without hyper-parameter tun-
ing. As PROD performs much worse than LR, it is not included in further experiments.

We evaluate the precision at k as

p@k =
1

|T |
∑
A∈T

1

|A|
∑
i∈A

1[rank(i | A\{i}) ≤ k].

8



Table 2: Description of the Amazon Baby registries dataset.

REGISTRY M TRAIN SIZE TEST SIZE

HEALTH 62 5278 1320
BATH 100 5510 1377
APPAREL 100 6482 1620
BEDDING 100 7119 1780
DIAPER 100 8403 2101
GEAR 100 7089 1772
FEEDING 100 10,090 2522

Table 3: MPR, p@k, and AUC values for LR, and baseline improvement over LR for other methods. Positive
values indicate the algorithm performs better than LR, and bold values indicate improvement over LR that lies
outside the standard deviation. Experiments were run 5 times, with |A+|/|A−|= 1

2
; α is set to its optimal LR

value.

Improvement over LR
Metric LR DYN EXP NCE

MPR 70.50 0.92 ± 0.56 0.68 ± 0.62 0.86 ± 0.55
p@1 9.96 0.67 ± 0.75 0.58 ± 0.76 0.20 ± 1.75
p@5 25.36 1.04 ± 0.82 0.78 ± 0.67 0.67 ± 1.09

p@10 36.50 1.39 ± 0.85 1.13 ± 0.79 0.97 ± 1.18
p@20 51.22 1.38 ± 0.97 1.28 ± 1.11 1.35 ± 1.20
AUC 0.630 0.027 ± 0.017 0.026 ± 0.016 0.009 ± 0.017

Compared to traditional SGA methods, algorithms that use inferred negatives perform (PROD ex-
cepted) better across all metrics and datasets. DYN and EXP provide consistent improvements com-
pared to the other methods, whereas NCE shows a higher variance and slightly worse performance.
Improvements observed using DYN and EXP are larger than the loss in performance due to going
from full-rank to low-rank kernels reported in [11].

Finally, we also compared all methods when tuning both the regularization α and the negative to
positive ratio |A−|/|A+|, but did not see any significant improvements. As this suggests there is no
need to do additional hyper-parameter tuning when using CE, we fix |A−|

|A+| =
1
2 for all experiments.
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