Zelda E. Mariet Modeling uncertainty in machine learning

Website: www.zeld.ai

E-Mail : zelda@alum.mit.edu

PROFESSIONAL EXPERIENCE Senior Research Scientist Google DeepMind 2019 -Reliable Deep Learning team | Modeling uncertainty in neural networks and LLMs. • Understanding why diversity improves robustness in neural network ensembles. Generalized the bias-variance decomposition to classification losses and derived an exact, computationally trivial definition of ensemble diversity which resolves a longstanding issue¹ in understanding ensembles of classifiers. • Plex: Reliability via pretrained large models. Developed models with state-of-the-art performance across a variety of vision, language, and decision-making tasks involving uncertainty. AI for Science team | Machine learning for drug discovery. • ML-guided nanobody design targeting COVID-19. Used ML to design nanobodies that neutralize SARS-CoV-2, including variants not seen during training, such as Delta and Omicron. Software Engineering Intern Google Research Summers 2016-2018 • Generative models for negatively dependent measures (2018). • Theory and applications of high-dimensional time series forecasting (2017). • Ranking optimization for Google Maps (2016). Education PhD (computer science), advised by Suvrit Sra MIT 2014-2019 Theory and applications of negatively dependent measures for ML. Minor: physical cosmology. Master of Science MIT Thesis: modeling diversity with determinantal point processes. 2014-2016 Master of Science & Bachelor of Science Ecole polytechnique (France) Specialization in Mathematics and Computer Science. 2011-2014

Selected Publications & patents

• High-throughput ML-guided design of diverse single-domain antibodies against	Under review
SARS-CoV-2. Angermueller, <u>Mariet</u> , et al.	
• Ensembling mixture-of-experts neural networks. <i>Patent #US20230107409A1</i>	pending, 2023
• Population-based black-box optimization. <i>Patent #US20230083892A1</i>	pending, 2023
• Ensembles of classifiers: a bias-variance perspective. Gupta, Smith, Adlam, <u>Mariet</u>	TMLR 2022
• Sparse MoEs meet efficient ensembles. <i>Allingham <u>et al.</u></i>	TMLR 2022
• Faster & More Reliable Tuning of Neural Networks: Bayesian Optimization with	AISTATS 2021

• Faster & More Reliable Tuning of Neural Networks: Bayesian Optimization with AISTATS 2021 Importance Sampling. Ariafar, <u>Mariet</u>, Brooks, Dy, Snoek

¹"Understanding ensemble diversity remains a holy grail problem" (*Ensemble Methods: Foundations and Algorithms*, Zhi-Hua Zhou, 2012)

• Distilling ensembles improves uncertainty estimates. <u>Mariet</u> , Jenatton, Wenzel, Tran	AABI 2021
• Population-based black-box optimization for biological sequence design. Ange	<i>r</i> - ICML 2020
mueller, Belanger, Gane, <u>Mariet</u> , Dohan, Murphy, Colwell, Sculley	
• Foundations of sequence-to-sequence modeling for time series. <u>Mariet</u> , Kuznetsov	AISTATS 2019
• Learning DPPs by sampling inferred negatives. <u>Mariet</u> , Gartrell, Sra	AISTATS 2019 NourIDS 2019
 Exponentiated strongly Rayleign distributions. <u>Matriet</u>, Sta, Jegetka Maximizing induced cardinality under a DPP Gillenwater Kulesza Vassilutiski 	ii NeurIPS 2018
Mariet	<i>ii,</i> 1(cuiii 5 2010
• Elementary symmetric polynomials for optimal experimental design. <u>Mariet</u> , Sra	NeurIPS 2017
• Kronecker determinantal point processes. <u>Mariet</u> , Sra	NIPS 2016
• Diversity networks: neural network compression using DPPs. <u>Mariet</u> , Sra	ICLR 2016
• Fixed-point algorithms for learning determinantal point processes. <u>Mariet</u> , Sra	ICML 2015
Invited talks	
• ML-guided nanobody design targeting COVID-19. Gaussian Process Seminar Series	2023
• Ensembling over classifiers: a bias-variance perspective. ASU Lyons Seminar	2022
• Modeling Negative Dependence at Scale. UAI Tractable Probabilistic Modeling worksh	<i>nop</i> 2021
Hosted workshops	
• Duality Principles for Modern Machine Learning (DP4ML 2023)	ICML 2023
• Negative Dependence and Submodularity for Machine Learning (NegDepML 2020)) ICML 2020
• Negative Dependence in Machine Learning (NegDepML 2019)	ICML 2019
Teaching Experience	
• Harvard instructor: Topics in Machine Learning (CS282r)	2022
• CSRMP mentor to 7 undergrad & grad students from underrepresented commu	unities 2022
• MIT Teaching Assistant: Machine Learning graduate course (6.867)	2016
• Math instructor at GEPPM, a French non-profit for underprivileged students	2011 - 2012
Awards & Community service	
• Women in Machine Learning (WiML) mentor	2022
• Google PhD Fellowship in machine learning	2018
Criteo Faculty Research Award program	2017
• Accepted to the Corps des Mines after graduating from Ecole polytechnique	2014
• Silver medal, SWERC international algorithmics contest	2013
• NeurIPS/ICML reviewer awards	2019, 2020, 2022
• NeurIPS/ICML reviewer awards	2019, 2020, 2022

Area Chair: AISTATS, IJCAI Reviewer: NeurIPS, ICML, ICLR, TMLR, JMLR

Spoken Languages